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SUMMARY 
In this paper we give two new results in the field of discrete time-dynamic decision problems. Firstly we 
prove the validity of the Bellman principle for the class of random decision policies; and secondly we give 
the effect on the objective function resulting from the decision maker being able to make use of an advisor 
with more information. 

1. Introduction 

We consider a decision process with decision steps at N discrete time instants. There are 
two ways to attack such a problem: 

(a) Determine the optimal sequence of decisions simultaneously. This is the case, for in- 
stance, in mult iperiod linear programming, where the whole sequence is generated 

simultaneously by solving one linear program; and this is what we mean, in fact, by 
the optimal sequence of  decisions maximizing or minimizing a multiperiod objective. 

(b) Use a decomposition in time. This can be performed by the application of the Bellman 
principle [1], which reduces the optimization procedure by determining an optimal 
solution at each time instant separately. 

The value of the latter approach will increase when it can be shown that it leads to the same 

optimal solution as obtained by the simultaneous optimization process. Now, the two 
methods obviously give the same solution for deterministic problems, but to show this 
rigorously for decision problems with random parameters is less trivial. Agreement has 
been shown for deterministic decision policies [2-6]. 

The main purpose of this paper  is to prove this agreement for a more extended class of  
random decision policies, i.e. for policies which are mappings into the set of  distribution 
functions over the admissible decisions. No attention has been paid to this up to now. 
The result is given in section 5. In section 6 we give another new result, which takes account 
of  the information aspect. Here we give the effect on the objective function resulting f rom 

the decision maker  being able to make use of  an adviser who has more information at his 
disposal. 

For  elucidation purposes we will represent the decision problem as an N-step decision 
tree in which each path is a chain of  such distributions. This representation makes possible 
an explicit formulation of the Bellman principle for the problem under consideration. For 
this we use a presentation due to C16ment [7]. In fact it will be shown that the validity of  
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this principle is based on a simple and fundamental isotony condition for the concatenation 
of sub-paths in the tree. 

2. Problem statement 

Consider a discrete dynamic system whose state is a random variable with a given distri- 
bution. At an arbitrary instant in time k, we have the following situation: 
(a) The system is in a certain state, xk; 
(b) The decision maker has at his disposal an amount of  information, z k, and a set of ad- 

missible decision actions, u k. 

The information z k consists of two elements: z k _ 1, the information from the preceding time 
instant; and Sk, the additional information obtained at k. We assume this additional infor- 
mation to consist of: 
1. Uk - i ,  the last decision action taken; 
2. Yk, other relevant, mostly incomplete, information about the system which becomes 

available at k (this may be, for  instance, an incomplete observation of the state Xk). 

Thus, concerning the information aspect of the problem, we define 

Zk = (Zk-1 ,  Sk}, the observable history, 

where 

Sk = {Uk- 1, Yk} is the additional information obtained at instant k. 

The decision consists in choosing a mapping from the set of available information, z k, into 
the set of all probability distributions of Uk. In fact, a decision at time instant k is an element 

out of the class. 

where 

�9 k('t zk): uk - ~k(uk I zk) 

is a density function of Uk given Zk. 

We will refer to the elements of S as the random decision policies or, more simply, as the 

policies. 
Note that a random decision policy can be interpreted as follows: if the decision maker 

could repeatedly arrive at time instant k, every time with the same information z k, then the 
random decision policy is the distribution over the decision actions he would take. It should 
be noted that the class D of deterministic policies 

D = { C k l C k :  z k ~ u k = Ck(Zk)} 

is contained in S, since the 6-function 

�9 ~(u~l zk) = ~[uk - C~(zk)] 

is an element of S. 
At each time instant k we define the valuation Vk[xk+ 1, Uk], which represents a measure 

of  the behaviour of the system. The overall objective is defined as the expectation E J o ,  
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where 
/q-1  

Jo = E V~[X,+ 1, us]" 
i=O 

It is the task of the decision maker to choose the overall strategy ~o . . . . .  ~k, - '-, ~n-1  
(where ~k e S and k = 0, 1, . . . ,  N - 1) which makes the objective EJ  o maximal. This 
problem will be treated in the next sections. 

3. Derivation of auxiliary formulae 

In this section we derive some formulae and make some observations which are relevant 
for the developments in the following sections. 

Let z~'be fixed. This includes that 
(a) The decision actions u o . . . . .  Ue-1 are fixed, and consequently the policies ~0 . . . . .  ~k-1 

are 6-distributions; 
(b) For  every ~k e S we have the density function ~bk(" I Zk). 
Furthermore we derive formulae for the following density functions: 
1. The density function of the additional information Sk+ 1 : 

P(Sk + 1 I Zk) = P(Yk+ I, UklZk) = P(Yk+ 1 l Uk, Zk)Ok(uklZk); (1) 

2. The joint density function of  the pair (xk+ 1, Uk) : 

P(Xk+ I, UklZk) = p(Xk+ I I Uk, Zk)~k(Uk I Zk); (2) 

3. More generally, the joint density function of the pair 
(xj+l, uj); j > k: 

p(xj+ I, UjIZk) = .I'p(xi+ l, Uj, Sl . . . .  , Sk+ l Izk)dsj, . . . ,  dSk+ l 

j'p(xj+ 1, uj lz i )p(s j lz j -1) ,  . . . ,p(sk+ , [zk)dsj, . . . ,  dSk+ l (3) 

where p(x j+l ,  ujlz~) depends on ~j, and P(h+l  Izi); i = k . . . . .  j -  1 depends on ~ .  
Thus, the expectations E[Vj(xj+I, u~)lZk]; j > k are determined as functions of the 

policies ~k . . . . .  ~i" 
We can now make the following observations. 

The tail o f  the objective 

For  this tail we can write 
N - 1  

EJk = E{E(JklZk)}, where Jk = Y, Vi(xi+l, ui). 
i=k 

The outer expectation applies to the variable z k. Consider the form E(Jkl Zk) at a fixed 
value o f z  k. This form is fully determined by the sequence of  policies ~k k = {~k, ~k+l . . . . .  
4~n--1} because of  (3). In order to express this dependence we use the notation 

Eok(JklZk) (4) 

where E0k stands for the expectation under the sequence ~0 k. 
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The construction o f  a policy ~ 

Consider the sequence of policies from the time instant k + 1 onwards to be fixed, say 
~k+l = (~k+l . . . . .  ~N-1}, and that a choice has to be made at k. From this time instant 
on we have the valuation E{~,,C,k+1}(Jkf Zk), which, for fixed zk, is only dependent on the 
density function ~k(" [Zk). Consequently, we can choose an optimal density function 
�9 ~(" ]zk) which maximizes this valuation. But this can be performed for every arbitrary, 
fixed value of z k. By doing so we construct a policy 

~ : z~ -~ ~*(. I z~) 

which makes E{~,i~,+,}(Jklzk) maximal for all z k- 
We finally present a formula of a more general nature which will play a fundamental 

role in the following sections. For a given random variable w = ~(s, t) we have the con- 
ditional expectation 

E(wlr)=ffO(s,t)p(s,t[r)dsdt 

=;f(o(s,t)p(s[t,r)p(tlr)dsdt 

As a consequence we find 

E(wlr) = ~ E(wl t, r)p(tlr)dt. (5) 
J 

4. Tree representation of the decision problem 

As a representation o f  the decision problem we take an N-step decision tree, with decision 

steps at the time instants 0, 1 . . . . .  N - 1 (Fig. 1). Each path in the tree is a chain o f  policies 

~'~"~, ~, "~___.<~N-,o 

L ] ] .1 . . . . . . . .  d ,, t I [ I I I .. I ' - - - I  

0 1 2 k-I  k k+l k+2 N-1 N 
TIME 

Figure 1. 
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Ck" The set of feasible policies in each node may be infinite. At an arbitrary node, at time 
instant k, we have the following situation: 
(a) The system is in a certain state, Xk; 
(b) The decision maker gets the information, Zk, at his disposal and makes a choice out 

of the set of feasible policies, Ck; 
(C) This will eventually lead to a new node in the tree. 
The search for an optimal path in the tree is considerably simplified if one can apply the 
Bellman principle to the selection procedure. The justification for this principle is contained 
in the following isotony condition. Let (see Fig. 1): 
1. Ok+l be the path of policies ~bk+ 1 . . . .  , CN-~ with the corresponding valuation 

E0~+~(Jk+I l zk+1); 
2. ip;,+l be an alternative path ~;,+1 . . . . .  ~u-1 with valuation EO,k+I(Jk+ 1 [Zk+l); 
3. ~k be the path from node A to node B. 
Then, we can make the concatenations {~k, Ok+l} and {~k, ~+~}. Furthermore, let 
~k+l >" ~';,+ 1 imply Eok+~(Jk+ 1 [Zk+~) > Eo,~+~(Jk+ 11Zk+l), for all Zk+ ~. Then, the isotony 
condition reads: 

t f >- 0 +1 >- 

This general setting of the Bellman principle has been presented by M. F. C16ment [7]. 
If  the system under consideration fulfils this condition, the search for an optimal path 

can be simplified by a backwards reduction of the set of paths. In the situation represented 
in Fig. 1 we can, when we have to make an optimal choice at A, delete all paths which 
are not better than ~k+ 1. 

5. Verification of the isotony condition 

Consider the two sub-paths Ok+l = {~k+l . . . . .  ~N-1} and ~;,+1 = {~;,+1 . . . .  ,4~v-1}, 
with corresponding valuations Eok + l(dk+ l lZk+ 1) and EO,,+ l(Jk+ l lZk+ 1). Let us assume that: 

Eo~+l(Jk+ 1 [Zk+l) ~ Eo,~+l(Jk+ 1 [Zk+a), for all Zk+ 1. (6) 

We now take one time step backwards and consider the concatenated subpaths {~k, 0k+ 1} 
and {r O;,+l}. Then, the isotony condition is fulfilled if 

Etr Ok+ ~i(Jk[Zk) >= E~ek, O,k+ ~i(JklZk), for all z k. 

In order to prove this we write: 

ok+ I = E{*k, + E{ k, Oh + 1}(Jk* 1 l zk). 

Keeping z k now fixed, we can make the following observations: 
(a) The term E{~, 0k§ I}(VklZk) is only dependent on the policy ~k, since the expectation of 

Vk does not depend on future policies. This term may therefore be denoted by Ee~(VkIZk). 
(b) For the second term we apply equation (5): 

Et~k, Ok+~}(Jk+ l [Zk) = f E{.k, Ok+~}(Jk+ 111 Zk + 1)p(Sk + 1 I Zk) dsk+ 1 

where Zk+ 1%r (Zk, Sk+l). The first factor under the integral sign is only dependent on 
Ok+l and becomes E0~+l(Jk+ i [Zk+I). 
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Thus, we obtain: 
r l  

E{r = Er -k- j E~t,+ t(Jk+ 1 [Zk+ l)p(sk+ 1 [zk)dSk+ 1. (7) 

A similar equation holds for 

Etr + ~(Jk[zk). (8) 

Note that, because of equation (1), the term p(sk+ l lzk) is only dependent on the policy Ck, 
and so this term has the same value in equations (7) and (8). Further, from equation (6) 
E~+ ~(Jk+ 1 I zk+ 1) > E0,k+ ~(Jk+ 1 I zk+ x), and we can therefore conclude from (7) and (8) that 

E ~ ,  ~ + ~(J~ I zk) >_- E{,~,,,~ + ~}(Jk I zD. 

Clearly this result holds for every arbitrary, fixed value of z~, and thus the isotony condition 
is fulfilled. 

6. The effect of the information on the decision making 

The information vector z k, as defined in section 2, is of a very general form. The only 
assumption made was that it contains the previous decision actions. The information Yk 
may contain either complete knowledge about the behaviour of the system, or none at all. 
In order to investigate the effect of this information, we can compare two situations which 
differ in that the information in one situation includes the information in the other. We 
feel that the description becomes more intuitive if we consider the situations from the point 
of view of two persons: (a) the decision maker, and (b) the advisor. The decision maker 
has the information z k at his disposal. He chooses policies from the class S = {q~k} which 
make use of this information. The advisor has more information at his disposal, say {zk, ~/k}, 
where ~k might reflect the fact that the advisor has more information about the behaviour 
of the system. The advisor chooses policies from the class T = {Ok} which make use of 
the information {z k, th}. The elements Ok are defined in the same way as ~k (see section 2). 

We note that the advisor can also choose a policy q~k by neglecting the additional infor- 
mation ~k. Thus, summing up, we have: 
(a) S, the class of the decision maker's coarse strategies, ~k, using the information zk; and 
(b) T, the class of the advisor's fine strategies, Ok, using the information {z k, ~/k}. 
Here, S c T. 

We will now explain and give an interpretation of the quantities Eg,~(Jklzk, rlk) and 

E~(Jklzk), where ~k = {~k, -" ,  q~N-1} and zcl, = {Ok . . . . .  ON-l}. 
Eok(Jklzk, rlk ) is the advisor's expectation under fixed {Zk, ~/k} if he applies the coarse 

strategy Ok, i.e. without making use of the additional information ~/k. 
E~(Jklzk) is the decision maker's expectation under fixed zk if he follows the advisor's 

fine strategy %. 
Let zck be the optimal strategy of the advisor; i.e. zk makes E~k(Jk[z k, th) maximal for 

all {zk, ~/k}. Since S c T we evidently have, for all strategies Ok and all {z k, ~/k} : 

From this inequality we pass to the inequality 
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This is done by applying equation (5): 

E=~.(Jkl Zk) 

> f Er I zk, rt~)p(rl~ I zk) drlk 

= E~,k(Jk l zk). 

Since this result holds for all strategies ~k, it also holds for the optimal strategy ~* of the 
decision maker. So we have proved that 

E~k*(Jk]Zk) >~ E~*(dklZk). 

This result may be interpreted as follows. The decision maker chooses a strategy, ~*, which 
makes his expectation maximal. However, he can obtain better results if he follows the 
strategy of the advisor. We note that this result does not contradict the definition of ~* since 
the advisor can choose from a more extended class of policies. 

7. The determination of the optimal path 

For the sake of completeness, we wilt show that for the problem under consideration the 
optimal path in the tree is deterministic. (This result has already been demonstrated in the 
literature, notably by Fel'dbaum [8] and Aoki [9]). 

Let the sub-path ~k+ 1 = {~k+ 1 . . . . .  ~N-1} be fixed. We must find a policy r for which 
the form 

E ~ , ~ +  ,}(JklZk) (9) 

is maximal for all Zk simultaneously. The way in which such a policy can be constructed 
has already been discussed in section 3. In order to find this policy we apply equation (5) 
to (9) and find: 

E~,~+,~(Jk I zk) = j E~r I zk, b/k) ~k(UkIZk) dug. 

Note that through the conditioning with respect to Uk, the first factor under the integral 
sign becomes independent of ~k. Thus, we obtain: 

�9 ~,~ ~l~(Jk I Zk) = f Er +,(Jk I Zk, Uk) ePk(Uk I Zk) duk. E 

Let, for an arbitrary value of z k, the form Ef,~,+~(Jk]Zk, Uk) be maximal for u* * = Ck (zk). 
Then we clearly must choose ~b k*(uk[zk) = 6[u k - Ck (Zk)]* in order to make E~k,~+~(Jk[Zk) 
maximal. If  we take such actions in reverse order, successively resulting in the policies 
~* j . . . . .  r . . . . .  r we will construct the optimal path, which is a deterministic one. 
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