On the Bellman principle for decision problems with random decision policies

R. P. VAN DER VET

Koninklïke/Shell-Laboratorium, (Shell Research B.V.), Amsterdam, The Netherlands.
(Received November 4, 1974)

SUMMARY

In this paper we give two new results in the field of discrete time-dynamic decision problems. Firstly we prove the validity of the Bellman principle for the class of random decision policies; and secondly we give the effect on the objective function resulting from the decision maker being able to make use of an advisor with more information.

1. Introduction

We consider a decision process with decision steps at N discrete time instants. There are two ways to attack such a problem:
(a) Determine the optimal sequence of decisions simultaneously. This is the case, for instance, in multiperiod linear programming, where the whole sequence is generated simultaneously by solving one linear program; and this is what we mean, in fact, by the optimal sequence of decisions maximizing or minimizing a multiperiod objective.
(b) Use a decomposition in time. This can be performed by the application of the Bellman principle [1], which reduces the optimization procedure by determining an optimal solution at each time instant separately.
The value of the latter approach will increase when it can be shown that it leads to the same optimal solution as obtained by the simultaneous optimization process. Now, the two methods obviously give the same solution for deterministic problems, but to show this rigorously for decision problems with random parameters is less trivial. Agreement has been shown for deterministic decision policies [2-6].
The main purpose of this paper is to prove this agreement for a more extended class of random decision policies, i.e. for policies which are mappings into the set of distribution functions over the admissible decisions. No attention has been paid to this up to now. The result is given in section 5 . In section 6 we give another new result, which takes account of the information aspect. Here we give the effect on the objective function resulting from the decision maker being able to make use of an adviser who has more information at his disposal.

For elucidation purposes we will represent the decision problem as an N-step decision tree in which each path is a chain of such distributions. This representation makes possible an explicit formulation of the Bellman principle for the problem under consideration. For this we use a presentation due to Clément [7]. In fact it will be shown that the validity of
this principle is based on a simple and fundamental isotony condition for the concatenation of sub-paths in the tree.

2. Problem statement

Consider a discrete dynamic system whose state is a random variable with a given distribution. At an arbitrary instant in time k, we have the following situation:
(a) The system is in a certain state, x_{k};
(b) The decision maker has at his disposal an amount of information, z_{k}, and a set of admissible decision actions, u_{k}.
The information z_{k} consists of two elements: z_{k-1}, the information from the preceding time instant; and s_{k}, the additional information obtained at k. We assume this additional information to consist of:

1. u_{k-1}, the last decision action taken;
2. y_{k}, other relevant, mostly incomplete, information about the system which becomes available at k (this may be, for instance, an incomplete observation of the state x_{k}).
Thus, concerning the information aspect of the problem, we define
$z_{k}=\left\{z_{k-1}, S_{k}\right\}$, the observable history,
where

$$
s_{k}=\left\{u_{k-1}, y_{k}\right\} \text { is the additional information obtained at instant } k .
$$

The decision consists in choosing a mapping from the set of available information, z_{k}, into the set of all probability distributions of u_{k}. In fact, a decision at time instant k is an element out of the class.

$$
S=\left\{\Phi_{k} \mid \Phi_{k}: z_{k} \rightarrow \Phi_{k}\left(\cdot \mid z_{k}\right)\right\}
$$

where

$$
\Phi_{k}\left(\cdot \mid z_{k}\right): u_{k} \rightarrow \Phi_{k}\left(u_{k} \mid z_{k}\right)
$$

is a density function of u_{k} given z_{k}.
We will refer to the elements of S as the random decision policies or, more simply, as the policies.

Note that a random decision policy can be interpreted as follows: if the decision maker could repeatedly arrive at time instant k, every time with the same information z_{k}, then the random decision policy is the distribution over the decision actions he would take. It should be noted that the class D of deterministic policies

$$
D=\left\{C_{k} \mid C_{k}: z_{k} \rightarrow u_{k}=C_{k}\left(z_{k}\right)\right\}
$$

is contained in S, since the δ-function

$$
\Phi_{k}\left(u_{k} \mid z_{k}\right)=\delta\left[u_{k}-C_{k}\left(z_{k}\right)\right]
$$

is an element of S.
At each time instant k we define the valuation $V_{k}\left[x_{k+1}, u_{k}\right]$, which represents a measure of the behaviour of the system. The overall objective is defined as the expectation $E J_{0}$,
where

$$
J_{0}=\sum_{i=0}^{N-1} V_{i}\left[x_{i+1}, u_{i}\right] .
$$

It is the task of the decision maker to choose the overall strategy $\Phi_{0}, \ldots, \Phi_{k}, \ldots, \Phi_{N-1}$ (where $\Phi_{k} \in S$ and $k=0,1, \ldots, N-1$) which makes the objective $E J_{0}$ maximal. This problem will be treated in the next sections.

3. Derivation of auxiliary formulae

In this section we derive some formulae and make some observations which are relevant for the developments in the following sections.

Let z_{k} be fixed. This includes that
(a) The decision actions u_{0}, \ldots, u_{k-1} are fixed, and consequently the policies $\Phi_{0}, \ldots, \Phi_{k-1}$ are δ-distributions;
(b) For every $\Phi_{k} \in S$ we have the density function $\Phi_{k}\left(\cdot \mid z_{k}\right)$.

Furthermore we derive formulae for the following density functions:

1. The density function of the additional information s_{k+1} :

$$
\begin{equation*}
p\left(s_{k+1} \mid z_{k}\right)=p\left(y_{k+1}, u_{k} \mid z_{k}\right)=p\left(y_{k+1} \mid u_{k}, z_{k}\right) \Phi_{k}\left(u_{k} \mid z_{k}\right) ; \tag{1}
\end{equation*}
$$

2. The joint density function of the pair $\left(x_{k+1}, u_{k}\right)$:

$$
\begin{equation*}
p\left(x_{k+1}, u_{k} \mid z_{k}\right)=p\left(x_{k+1} \mid u_{k}, z_{k}\right) \Phi_{k}\left(u_{k} \mid z_{k}\right) ; \tag{2}
\end{equation*}
$$

3. More generally, the joint density function of the pair
$\left(x_{j+1}, u_{j}\right) ; j>k$:

$$
\begin{align*}
p\left(x_{j+1}, u_{j} \mid z_{k}\right) & =\int p\left(x_{j+1}, u_{j}, s_{j}, \ldots, s_{k+1} \mid z_{k}\right) d s_{j}, \ldots, d s_{k+1} \\
& =\int p\left(x_{j+1}, u_{j} \mid z_{j}\right) p\left(s_{j} \mid z_{j-1}\right), \ldots, p\left(s_{k+1} \mid z_{k}\right) d s_{j}, \ldots, d s_{k+1} \tag{3}
\end{align*}
$$

where $p\left(x_{j+1}, u_{j} \mid z_{j}\right)$ depends on Φ_{j}, and $p\left(s_{i+1} \mid z_{i}\right) ; i=k, \ldots, j-1$ depends on Φ_{i}.
Thus, the expectations $E\left[V_{j}\left(x_{j+1}, u_{j}\right) \mid z_{k}\right] ; j \geqq k$ are determined as functions of the policies $\Phi_{k}, \ldots, \Phi_{j}$.

We can now make the following observations.

The tail of the objective

For this tail we can write

$$
E J_{k}=E\left\{E\left(J_{k} \mid z_{k}\right)\right\}, \text { where } J_{k}=\sum_{i=k}^{N-1} V_{i}\left(x_{i+1}, u_{i}\right) .
$$

The outer expectation applies to the variable z_{k}. Consider the form $E\left(J_{k} \mid z_{k}\right)$ at a fixed value of z_{k}. This form is fully determined by the sequence of policies $\psi_{k}=\left\{\Phi_{k}, \Phi_{k+1}, \ldots\right.$, $\left.\Phi_{N-1}\right\}$ because of (3). In order to express this dependence we use the notation

$$
\begin{equation*}
E_{\psi_{k}}\left(J_{k} \mid z_{k}\right) \tag{4}
\end{equation*}
$$

where $E_{\psi_{k}}$ stands for the expectation under the sequence ψ_{k}.

The construction of a policy Φ_{k}
Consider the sequence of policies from the time instant $k+1$ onwards to be fixed, say $\hat{\psi}_{k+1}=\left\{\hat{\Phi}_{k+1}, \ldots, \hat{\Phi}_{N-1}\right\}$, and that a choice has to be made at k. From this time instant on we have the valuation $E_{\left\{\Phi_{k}, \psi_{k+1)}\right\}}\left(J_{k} \mid z_{k}\right)$, which, for fixed z_{k}, is only dependent on the density function $\Phi_{k}\left(\cdot \mid z_{k}\right)$. Consequently, we can choose an optimal density function $\Phi_{k}^{*}\left(\cdot \mid z_{k}\right)$ which maximizes this valuation. But this can be performed for every arbitrary, fixed value of z_{k}. By doing so we construct a policy

$$
\Phi_{k}^{*}: z_{k} \rightarrow \Phi_{k}^{*}\left(\cdot \mid z_{k}\right)
$$

which makes $E_{\left\{\Phi_{k}, \hat{\psi}_{k+1}\right\}}\left(J_{k} \mid z_{k}\right)$ maximal for all z_{k}.
We finally present a formula of a more general nature which will play a fundamental role in the following sections. For a given random variable $w=\phi(s, t)$ we have the conditional expectation

$$
\begin{aligned}
E(w \mid r) & =\iint \phi(s, t) p(s, t \mid r) d s d t \\
& =\iint \phi(s, t) p(s \mid t, r) p(t \mid r) d s d t \\
& =\int\left\{\int \phi(s, t) p(s \mid t, r) d s\right\} p(t \mid r) d t
\end{aligned}
$$

As a consequence we find

$$
\begin{equation*}
E(w \mid r)=\int E(w \mid t, r) p(t \mid r) d t \tag{5}
\end{equation*}
$$

4. Tree representation of the decision problem

As a representation of the decision problem we take an N-step decision tree, with decision steps at the time instants $0,1, \ldots, N-1$ (Fig. 1). Each path in the tree is a chain of policies

Figure 1.
Φ_{k}. The set of feasible policies in each node may be infinite. At an arbitrary node, at time instant k, we have the following situation:
(a) The system is in a certain state, x_{k};
(b) The decision maker gets the information, z_{k}, at his disposal and makes a choice out of the set of feasible policies, Φ_{k};
(c) This will eventually lead to a new node in the tree.

The search for an optimal path in the tree is considerably simplified if one can apply the Bellman principle to the selection procedure. The justification for this principle is contained in the following isotony condition. Let (see Fig. 1):

1. ψ_{k+1} be the path of policies $\Phi_{k+1}, \ldots, \Phi_{N-1}$ with the corresponding valuation $E_{\psi_{k+1}}\left(J_{k+1} \mid z_{k+1}\right)$;
2. ψ_{k+1}^{\prime} be an alternative path $\Phi_{k+1}^{\prime}, \ldots, \Phi_{N-1}^{\prime}$ with valuation $E_{\psi_{k+1}^{\prime}}\left(J_{k+1} \mid z_{k+1}\right)$;
3. Φ_{k} be the path from node A to node B.

Then, we can make the concatenations $\left\{\Phi_{k}, \psi_{k+1}\right\}$ and $\left\{\Phi_{k}, \psi_{k+1}^{\prime}\right\}$. Furthermore, let $\psi_{k+1} \succ \psi_{k+1}^{\prime}$ imply $E_{\psi_{k+1}}\left(J_{k+1} \mid z_{k+1}\right) \geqq E_{\psi_{k+1}^{\prime}}\left(J_{k+1} \mid z_{k+1}\right)$, for all z_{k+1}. Then, the isotony condition reads:

$$
\psi_{k+1} \succ \psi_{k+1}^{\prime} \Rightarrow\left\{\Phi_{k}, \psi_{k+1}\right\} \succ\left\{\Phi_{k}, \psi_{k+1}^{\prime}\right\} .
$$

This general setting of the Bellman principle has been presented by M. F. Clément [7].
If the system under consideration fulfils this condition, the search for an optimal path can be simplified by a backwards reduction of the set of paths. In the situation represented in Fig. 1 we can, when we have to make an optimal choice at A, delete all paths which are not better than ψ_{k+1}.

5. Verification of the isotony condition

Consider the two sub-paths $\psi_{k+1}=\left\{\Phi_{k+1}, \ldots, \Phi_{N-1}\right\}$ and $\psi_{k+1}^{\prime}=\left\{\Phi_{k+1}^{\prime}, \ldots, \Phi_{N-1}^{\prime}\right\}$, with corresponding valuations $E_{\psi_{k+1}}\left(J_{k+1} \mid z_{k+1}\right)$ and $E_{\psi^{\prime} k+1}\left(J_{k+1} \mid z_{k+1}\right)$. Let us assume that:

$$
\begin{equation*}
E_{\psi_{k+1}}\left(J_{k+1} \mid z_{k+1}\right) \geqq E_{\psi_{k+1}^{\prime}}\left(J_{k+1} \mid z_{k+1}\right) \text {, for all } z_{k+1} . \tag{6}
\end{equation*}
$$

We now take one time step backwards and consider the concatenated subpaths $\left\{\Phi_{k}, \psi_{k+1}\right\}$ and $\left\{\Phi_{k}, \psi_{k+1}^{\prime}\right\}$. Then, the isotony condition is fulfilled if

$$
E_{\left\{\Phi_{k}, \psi_{k+1}\right\}}\left(J_{k} \mid z_{k}\right) \geqq E_{\left\{\Phi_{k}, \psi^{\prime}{ }_{k+1}\right\}}\left(J_{k} \mid z_{k}\right) \text {, for all } z_{k} .
$$

In order to prove this we write:

$$
E_{\left\{\Phi_{k}, \psi_{k+1}\right\}}\left(J_{k} \mid z_{k}\right)=E_{\left\{\Phi_{k}, \psi_{k+1}\right\}}\left(V_{k} \mid z_{k}\right)+E_{\left\{\Phi_{k}, \psi_{k+1}\right\}}\left(J_{k+1} \mid z_{k}\right) .
$$

Keeping z_{k} now fixed, we can make the following observations:
(a) The term $E_{\left\{\Phi_{k}, \psi_{k+1}\right\}}\left(V_{k} \mid z_{k}\right)$ is only dependent on the policy Φ_{k}, since the expectation of V_{k} does not depend on future policies. This term may therefore be denoted by $E_{\boldsymbol{\phi}_{k}}\left(V_{k} \mid z_{k}\right)$.
(b) For the second term we apply equation (5):

$$
E_{\left\{\Phi_{k}, \psi_{k+1}\right\}}\left(J_{k+1} \mid z_{k}\right)=\int E_{\left\{\Phi_{k}, \psi_{k+1}\right\}}\left(J_{k+1} \mid z_{k+1}\right) p\left(s_{k+1} \mid z_{k}\right) d s_{k+1}
$$

where $z_{k+1} \stackrel{\text { def }}{=}\left(z_{k}, s_{k+1}\right)$. The first factor under the integral sign is only dependent on ψ_{k+1} and becomes $E_{\psi_{k+1}}\left(J_{k+1} \mid z_{k+1}\right)$.

Thus, we obtain:

$$
\begin{equation*}
E_{\left\{\Phi_{k}, \psi_{k+1}\right\}}\left(J_{k} \mid z_{k}\right)=E_{\Phi_{k}}\left(V_{k} \mid z_{k}\right)+\int E_{\psi_{k+1}}\left(J_{k+1} \mid z_{k+1}\right) p\left(s_{k+1} \mid z_{k}\right) d s_{k+1} . \tag{7}
\end{equation*}
$$

A similar equation holds for

$$
\begin{equation*}
E_{\left\{\Phi_{k}, \psi_{k+1}^{\prime}\right\}}\left(J_{k} \mid z_{k}\right) \tag{8}
\end{equation*}
$$

Note that, because of equation (1), the term $p\left(s_{k+1} \mid z_{k}\right)$ is only dependent on the policy Φ_{k}, and so this term has the same value in equations (7) and (8). Further, from equation (6) $E_{\psi_{k+1}}\left(J_{k+1} \mid z_{k+1}\right) \geqq E_{\psi_{k+1}^{\prime}}\left(J_{k+1} \mid z_{k+1}\right)$, and we can therefore conclude from (7) and (8) that

$$
E_{\left\{\Phi_{k}, \psi_{k+1}\right\}}\left(J_{k} \mid z_{k}\right) \geqq E_{\left\{\Phi_{k}, \psi_{k+1}^{\prime}\right\}}\left(J_{k} \mid z_{k}\right) .
$$

Clearly this result holds for every arbitrary, fixed value of z_{k}, and thus the isotony condition is fulfilled.

6. The effect of the information on the decision making

The information vector z_{k}, as defined in section 2 , is of a very general form. The only assumption made was that it contains the previous decision actions. The information y_{k} may contain either complete knowledge about the behaviour of the system, or none at all. In order to investigate the effect of this information, we can compare two situations which differ in that the information in one situation includes the information in the other. We feel that the description becomes more intuitive if we consider the situations from the point of view of two persons: (a) the decision maker, and (b) the advisor. The decision maker has the information z_{k} at his disposal. He chooses policies from the class $S=\left\{\Phi_{k}\right\}$ which make use of this information. The advisor has more information at his disposal, say $\left\{z_{k}, \eta_{k}\right\}$, where η_{k} might reflect the fact that the advisor has more information about the behaviour of the system. The advisor chooses policies from the class $T=\left\{\Theta_{k}\right\}$ which make use of the information $\left\{z_{k}, \eta_{k}\right\}$. The elements Θ_{k} are defined in the same way as Φ_{k} (see section 2).

We note that the advisor can also choose a policy Φ_{k} by neglecting the additional information η_{k}. Thus, summing up, we have:
(a) S, the class of the decision maker's coarse strategies, Φ_{k}, using the information z_{k}; and (b) T, the class of the advisor's fine strategies, Θ_{k}, using the information $\left\{z_{k}, \eta_{k}\right\}$.

Here, $S \subset T$.
We will now explain and give an interpretation of the quantities $E_{\psi_{k}}\left(J_{k} \mid z_{k}, \eta_{k}\right)$ and $E_{\pi_{k}}\left(J_{k} \mid z_{k}\right)$, where $\psi_{k}=\left\{\Phi_{k}, \ldots, \Phi_{N-1}\right\}$ and $\pi_{k}=\left\{\Theta_{k}, \ldots, \Theta_{N-1}\right\}$.
$E_{\psi_{k}}\left(J_{k} \mid z_{k}, \eta_{k}\right)$ is the advisor's expectation under fixed $\left\{z_{k}, \eta_{k}\right\}$ if he applies the coarse strategy ψ_{k}, i.e. without making use of the additional information η_{k}.
$E_{\pi_{k}}\left(J_{k} \mid z_{k}\right)$ is the decision maker's expectation under fixed z_{k} if he follows the advisor's fine strategy π_{k}.

Let π_{k}^{*} be the optimal strategy of the advisor; i.e. π_{k}^{*} makes $E_{\pi_{k}}\left(J_{k} \mid z_{k}, \eta_{k}\right)$ maximal for all $\left\{z_{k}, \eta_{k}\right\}$. Since $S \subset T$ we evidently have, for all strategies ψ_{k} and all $\left\{z_{k}, \eta_{k}\right\}$:

$$
E_{\pi_{k} *}\left(J_{k} \mid z_{k}, \eta_{k}\right) \geqq E_{\psi_{k}}\left(J_{k} \mid z_{k}, \eta_{k}\right)
$$

From this inequality we pass to the inequality

$$
E_{\pi_{k^{*}}}\left(J_{k} \mid z_{k}\right) \geqq E_{\psi_{k}}\left(J_{k} \mid z_{k}\right) .
$$

This is done by applying equation (5):

$$
\begin{aligned}
E_{\pi_{k^{*}}}\left(J_{k} \mid z_{k}\right) & =\int E_{\pi_{k} *}\left(J_{k} \mid z_{k}, \eta_{k}\right) p\left(\eta_{k} \mid z_{k}\right) d \eta_{k} \\
& \geqq \int E_{\psi_{k}}\left(J_{k} \mid z_{k}, \eta_{k}\right) p\left(\eta_{k} \mid z_{k}\right) d \eta_{k} \\
& =E_{\psi_{k}}\left(J_{k} \mid z_{k}\right) .
\end{aligned}
$$

Since this result holds for all strategies ψ_{k}, it also holds for the optimal strategy ψ_{k}^{*} of the decision maker. So we have proved that

$$
E_{\pi_{k^{*}}}\left(J_{k} \mid z_{k}\right) \geqq E_{\psi_{k^{*}}}\left(J_{k} \mid z_{k}\right)
$$

This result may be interpreted as follows. The decision maker chooses a strategy, ψ_{k}^{*}, which makes his expectation maximal. However, he can obtain better results if he follows the strategy of the advisor. We note that this result does not contradict the definition of ψ_{k}^{*} since the advisor can choose from a more extended class of policies.

7. The determination of the optimal path

For the sake of completeness, we will show that for the problem under consideration the optimal path in the tree is deterministic. (This result has already been demonstrated in the literature, notably by Fel'dbaum [8] and Aoki [9]).

Let the sub-path $\hat{\psi}_{k+1}=\left\{\widehat{\Phi}_{k+1}, \ldots, \widehat{\Phi}_{N-1}\right\}$ be fixed. We must find a policy Φ_{k}^{*} for which the form

$$
\begin{equation*}
E_{\left\{\Phi_{k}, \hat{\psi}_{k+1}\right\}}\left(J_{k} \mid z_{k}\right) \tag{9}
\end{equation*}
$$

is maximal for all z_{k} simultaneously. The way in which such a policy can be constructed has already been discussed in section 3. In order to find this policy we apply equation (5) to (9) and find:

$$
E_{\left\{\Phi_{k}, \hat{\psi}_{k+1}\right\}}\left(J_{k} \mid z_{k}\right)=\int E_{\left\{\Phi_{k}, \tilde{\psi}_{k+1}\right\}}\left(J_{k} \mid z_{k}, u_{k}\right) \Phi_{k}\left(u_{k} \mid z_{k}\right) d u_{k}
$$

Note that through the conditioning with respect to u_{k}, the first factor under the integral sign becomes independent of Φ_{k}. Thus, we obtain:

$$
E_{\left\{\Phi_{k}, \psi_{k}+\dot{+}\right\}}\left(J_{k} \mid z_{k}\right)=\int E_{\psi_{k+1}}\left(J_{k} \mid z_{k}, u_{k}\right) \Phi_{k}\left(u_{k} \mid z_{k}\right) d u_{k}
$$

Let, for an arbitrary value of z_{k}, the form $E_{\hat{\psi}_{k+1}}\left(J_{k} \mid z_{k}, u_{k}\right)$ be maximal for $u_{k}^{*}=C_{k}^{*}\left(z_{k}\right)$. Then we clearly must choose $\Phi_{k}^{*}\left(u_{k} \mid z_{k}\right)=\delta\left[u_{k}-C_{k}^{*}\left(z_{k}\right)\right]$ in order to make $E_{\left\{\Phi_{k}, \hat{\psi}_{k+1}\right\}}\left(J_{k} \mid z_{k}\right)$ maximal. If we take such actions in reverse order, successively resulting in the policies $\Phi_{N-1}^{*}, \ldots, \Phi_{k}^{*}, \ldots, \Phi_{0}^{*}$, we will construct the optimal path, which is a deterministic one.

Acknowledgment

The author is indebted to Dr. H. Bolder of Koninklijke/Shell-Laboratorium, Amsterdam for valuable discussions.

REFERENCES

[1] R. Bellman, Dynamic Programming, Princeton University Press, Princeton (1957).
[2] K. J. Aström, Optimal control of Markov Processes with incomplete state information, Journal of Mathematical Analysis and Applications, 10 (1965) 174.
[3] E. B. Dynkin, Controlled random sequences, Theory of probability and its applications, Vol. X, No. 1 (1965) 1 .
[4] H. Kushner, Introduction to stochastic control, Holt, Reinhart and Winston Inc., New York (1971).
[5] L. Meier, Combined optimum control and estimation theory, NASA report No. CR-426 (1966).
[6] C. Striebel, Sufficient statistics in the optimum control of stochastic systems, Journal of Mathematical Analysis and Applications, 12 (1965) 576.
[7] M. F. Clément, Categorical axiomatics of dynamic programming, J. Math. Anal. Appl., 51 (1975) 47.
[8] A. A. Fel'dbaum, Dual Control Theory I-IV, Automation and Remote Control, Vol. 21 (1960). 1240, 1453; and Vol. 22 (1961) 3, 129.
[9] M. Aoki, Optimization of Stochastic Systems, Academic Press, New York (1967).

